Stampa questa pagina

Riferimenti bibliografici

Vota questo articolo
(0 Voti)

da Perché NEURO-UPPER? I principi teorici, i meccanismi di azione, il primo studio sperimentale - Olimpia Pino, Dipartimento di Neuroscienze, Università di Parma e Francesco La Ragione, Microengineering, Caserta

Per informazioni  Questo indirizzo email è protetto dagli spambots. E' necessario abilitare JavaScript per vederlo.

Scarica il pdf dell'intero articolo

Torna indietro nell'articolo

Riferimenti bibliografici

American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). doi:10.1176/appi.books.9780890423349.

Arias, J. et al. (2006). Systematic review of the efficacy of meditation techniques as treatments for medical illness. Journal of Alternative and Complementary Medicine, 12, 817-832.

Baehr, E., Rosenfeld, J. P., & Baehr, R. (2001). Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. Journal of Neurotherapy, 4 (4), 11-18.

Blood, A.J., Zatorre, R.J., Bermudez, P., & Evans, A.C. (1999). Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nature Neuroscience, 2, 382-287.

Chen, C., Chen, J. & Dai, L. (2015). Working memory and functional neuroimaging in patients with depression. Psychology, 6, 1438-1442. doi: 10.4236/psych.2015.612140.

Davidson, R.J. (1992). Anterior cerebral asymmetry and the nature of emotion. Brain and Cognition factors. Psychophysiology, 35, 389-404.

Elliot, A.J. (2015). Color and psychological functioning: A review of theoretical and empirical work. Frontiers in Psychology, 6 (368): 368. doi: PMid:25883578.

Faber, P.L., Steiner, M.E., Lehmann, D., Pascual-Marqui, R.D., Jäncke, L., Esslen, M., et al. (2008). Deactivation of the medial prefrontal cortex in experienced Zen meditators. Abstract Brain Topogr. 20, 172-173.

Falzon, O., & Camilleri, K.P. (2013). Multi-colour stimuli to improve information transfer rates in SSVEP-based Brain-Computer Interfaces. Communication presented at the IEEE EMBS Conference on Neural Engineering, San Diego, California.

Gerdes, L., Gerdes, P, Lee, S.W., & Tegeler, C.H. (2013). HIRREM: a noninvasive, allostatic methodology for relaxation and auto-calibration of neural oscillations. Brain and Behaviour, 3 (2), 193-205.

Godinez Tello, R.M. Jr, Torres Muller, S.M., Ferreira, A. & Freire Bastos, T. (2015). Comparison of the influence of stimuli color on Steady-State Visual Evoked Potentials. Research on Biomedical Engineering, 31, 218-231. doi:

Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry, 23, 56-62.

Hammond, D.C. (2005). Neurofeedback treatment of depression and anxiety. Journal of Adult Development, 12, (2-3), 131-137.

Hammond, D.C. (2007). What is neurofeedback? Journal of Neurotherapy, 10 (4), 25-36.

Hao, Y., et al. (2014). A visual feedback design based on a Brain-Computer Interface to assist users regulate their emotional state. CHI, Apri 26 – May 01, 2491-2496.

Harmony, T. (2013). The functional significance of delta oscillations in cognitive processing. Frontiers in Integrative Neuroscience, 7, art 83, 1-10. doi: 10.3389/fnint.2013.00083

Hyman, J. M., Zilli, E. A., Paley, A. M., & Hasselmo, M. E. (2010). Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front. Integr. Neurosci. 4, 2. doi: 10.3389/neuro.07.002.2010

Hughes, J.R., Daboul, Y., & Fino, J. J. (2000). The Mozart effect: Distinctive aspects of the music – A clue to brain coding? Clinical Electroencephalography, 31, 94-103.

Juslin, P.N., Liljeström, S., Västfjäll, D., & Lundqvist, L. (2010). How does music evoke emotions? Exploring the underlying mechanisms. In Handbook of music and emotion: Theory, research, applications, Series in Affective Science. New York: Oxford University Press.

Katie, C., Aidan, S., Ian, P. & Dave, M. (2010). Evaluating a brain-computer interface to categorise human emotional response. Proc. 10th IEEE International Conference on Advanced Learning Technologies, pp. 276-278.

Kirsh, D.L., & Nichols, N. (2013). Cranial electrotherapy stimulation for treatment of anxiety, depression, and insomnia. Psychiatric Clinical of North America, 36, 169-176. doi:

Knyazev, G. (2012). EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci. Bio behav. Rev. 36, 677-695. doi:10.1016/j. neubiorev.2011.10.002

Knyazev, G.G., Savostyanov, A.N., & Levin, E.A., (2004). Alpha oscillations as a correlate of trait anxiety. International Journal of Psychophysiology, 53 (2), 147-160.

Knyazev, G.G., Schutter, D.J.L.G., & van Honk, J. (2006). Anxious apprehension increases coupling of delta and beta oscillations. Int. J. Psychophysiol. 61, 283-287. doi:10.1016/j.ijpsycho.2005.12.003

Koelsch, S., Fritz, T., von Cramon, D.Y., Müller, K., & Friederici, A.D. (2006). Investigating emotion with music: An fMRI study. Human Brain Mapping, 27, 239-250.

Large, E.W., & Almonte, F.V. (2012). Neurodynamics, tonality, and the auditory brainstem response. New York Academy of Science, New York, 1252, E1-E7.

Large, E.W., & Kolen, J.F. (1994). Resonance and the perception of musical meter. Connection Science: Journal of Neural Computing, Artificial Intelligence and Cognitive Research, 6 (1), 177-208.

LeDoux J. (1996). The emotional brain. Phoenix, New York.

Lehmann, D., Faber, P.L., Tei, S., Pascual-Marqui, R.D., Milz, P., & Kochi, K. (2012). Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. Neuroimage 60, 1574-1586. doi:10.1016/j.neuroimage.2012. 01.042

Lim, C.A. & Chia, W.C. (2015). Analysis of single-electrode EEG rhythms using MATLAB to elicit correlation with cognitive stress. International Journal of Computer Theory and Engineering, 7, 149-155. doi:10.7763/IJCTE.2015.V7.947.

Lim, L. (2013). The potential of intranasal light therapy for brain stimulation. In: NAALT Conference. Palm Beach Gardens: Florida.

Liu, Y., Sourina, O., & Nguyen, M.K. (2011). Real time EEG-based emotion recognition and its applications. In Transactions on computational science XII (pp. 256-277). Springer Berlin Heidelberg.

Loui, P., Bachorik, J.P., Li, H.C. & Schlaug, G. (2013). Effects of voice on emotional arousal. Frontiers in Psychology. 4, 675. doi: 10.3389/fpsyg.2013.00675.

Makeig, S., Leslie, G., Mullen, T., Sarma, D., Bigdely-Shamlo, N., & Kothe, C. (2011). First demonstration of a musical emotion BCI. Affective Computing and Intelligent Interaction (pp. 487-496). Springer Berlin Heidelberg.

Maggi, L., Parini, S., Piccini, L., Panfili, G., Andreoni, G., (2006). A four command BCI system based on the SSVEP protocol. Proc. 28th IEEE EMBS Annual International Conference, New York City, USA, Aug 30-Sept 3, pp. 1264–1267.

Mauro, D.G. (2005). Using music to tap into a universal neural grammar. XXVII Annual conference of the Cognitive Science Society, 132, 21-23.

McFarland, D.J., & Wolpaw, J.R. (2010). Brain-computer interface operation of robotic and prosthetic devices. Computer, 41, 52-56.

Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Neuroscience, 15, 483-506.

Mehta, N.A., Hameed, S.H.S., & Jackson, M.M. (2010). Optimal control strategies for an SSVEP-based brain computer interface. International Journal of Human-Computer Interaction, Volume 27, Issue 1, Special Issue: Current Trends in Brain Computer Interface (BCI) Research and Development.

Middendorf, M., McMillan, G., Calhoun, G., & Jones, K. (2000). Brain-Computer Interfaces based on the Steady-State Visual-Evoked Response, IEEE Transaction on Rehabilitation Engineering, vol. 8 (2), 211-214.

Moratti, S., Rubio, G., Campo, P., Keil, A. & Ortiz, T., (2008). Hypofunction of right temporoparietal cortex during emotional arousal in depression. Archives of General Psychiatry, 65 (5), 532-541.

Nozaradan, S., Peretz, I., & Mouraux, A. (2012). Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. The Journal of Neuroscience, 32 (49), 17572-17581.

Pfurtscheller G. et al. (1996). Event-related synchronization (ERS) in the alpha band- an electrophysiological correlate of cortical idling: A review. International Journal of Psychophysiology, 24, (1 -2), 39-46.

Pino, O., & La Ragione, F. (2016). A Brain Computer Interface for audio-visual entrainment in emotional regulation: Preliminary evidence of its effects. Online International Interdisciplinary Research Journal, VI (II), 1-12.

Pino, O., & La Ragione, F. (2014). The secret in the air. The effect of negative air ions: Empirical evidence and erroneous beliefs. Lambert Academy Publishing, Saarbruken, Germany.

Raven, J., Raven, J. C., & Court, J. H. (2003). Manual for Raven's Progressive Matrices and vocabulary scales. San Antonio, TX: Harcourt Assessment.

Salimpoor, V.N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R.J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 1, 257-264. doi:10.1038/nn.272.

Salimpoor, V.N., van den Bosch, I., Kovacevic, N., McIntosh, A.R., Dagher, A., & Zatorre, R.J. (2013). Interactions between the nucleus accumbens and auditory cortices predict music reward value. Science, 340, 216-219.

Shangkai G., Yijun W., Xiaorong G., & Bo, H. (2014). Visual and auditory Brain-Computer Interfaces. IEEE Transactions on Biomedical Engineering, 61, 5, 1436-1447.

Spielberger, C.D., Gorsuch, R.L., Lushene, R., Vagg, P.R., & Jacobs, G.A. (1983). Manual for the State-Trait Anxiety Inventory. Palo Alto, CA: Consulting Psychologists Press.

Sterling, P. (2012). Allostasis: A model of predictive regulation. Physiology and Behaviour, 106, 5-15.

Tei, S., Pascal, A.E., Faber, P.L., Lehmann, D., Tsujiuchi, T., Kumano, H., et al. (2009). Meditators and non-meditators: EEG source imaging during resting. Brain Topogr. 22, 158-165. doi:10.1007/s10548-009-0107-4.

Thut, G., Schyns, P.G. & Gross, J. (2011). Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Frontiers of Psychology, 2, 170. doi: 10.3389/ fpsyg.2011.00170.

Vialatte, F.B., Maurice, M., Dauwles, J., & Cichocki, A. (2010). Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives. Progress in Neurobiology, 90, 418-438. doi:10.1016/j.pneurobio.2009.11.005.

Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale-Revised (WAIS-R). New York: The Psychological Corporation.

Will, U., & Berg, E. (2007). Brain wave synchronization and entrainment to periodic acoustic stimuli. Neuroscience Letters, 424 (1), 55-60. doi:10.1016/j.neulet.2007.07.036.

Zatorre, R.J. (2003). Music and the brain. Annals of the New York Academy of Sciences, 999, 4-14.

Zhu, D., Bieger, J., Molina, G. G., & Ronald, M. A. (2010). A survey of stimulation methods used in SSVEP-based BCIs. Computational Intelligence and Neuroscience, 1-12.

Zoefel, B., et al., (2010). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. NeuroImage. doi:10.1016/j.neuroimage.2010.08.078.

Torna indietro nell'articolo

Letto 2391 volte